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Lab 3 – Bulb Board

(from DAC)
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Bulb Board Circuit Schematic

2nd order filter

Bulb driver Intensity sensor

-5V generator



Lecture 8  Slide 4PYKC 31 Jan 2025 DE2 – Electronics 2

 RC low pass filter circuit in Year 1:

 Transfer function: 

𝐻 𝑠 = !!(#)
!"#(#)

= %
%&'#

       

 Remember, for a 1st order system, the output step response reaches the 
following percentages of final value after n x t, n=1,2,3,…:

Transfer function of an RC circuit

Time = t 2t 3t 4t

Final value 63.2% 86.5% 95% 98.2%

H(s)Vin(s) Vc(s)

𝜏 = RC
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 In Lab 3, we use the Bulb Board system, and it was known that the light 
bulb part of the system has a transfer function as shown:

 Therefore the light bulb itself has an exponential response with a time 
constant t = 38 ms.

Transfer function of a light bulb
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 Once you know the transfer function B(s) of a system, you can evaluate its 
frequency response by evaluating H(s) at  s = jw:

 Therefore, for our light bulb (not including the 2nd order electronic circuit,  
the frequency response is:

 From DE1 Electronics 1, you know that this is a low pass filter – gain 
drops with increasing frequency.

From Transfer function to Frequency Response

𝐵 𝑗𝜔 = %𝐵(𝑠)
!"#$

𝐵 𝑗𝜔 = )
1

(1 + 0.038𝑠) !"#$

𝐵(𝑗𝜔) = %
(%'(.(*+#$)

= %
%'(.(*+($(
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 Let us consider a general second order system with a transfer function of 
the general form:

𝐻 𝑠 =
𝑌(𝑠)
𝑋(𝑠)

=
𝑏)𝑠) + 𝑏%𝑠 + 𝑏*
𝑠) + 𝑎%𝑠 + 𝑎*

 To simplify the problem a bit, let us assuming that b2 = b1 = 0.  The above 
equation can be rewritten as:

 where:    
• 𝜔* = 𝑎*	,	 the resonant (or natural) frequency in rad/sec

• 𝜁 = +$
) +%

	 , the damping factor (no unit) (pronounced as zeta)

• 𝐾 = ,%
+%

 ,      gain of the system

Transfer Function of a 2nd order system

𝐻 𝑠 =
𝑏*

𝑠) + 𝑎%𝑠 + 𝑎*
= 𝐾

𝜔*)

𝑠) + 2𝜁 𝜔*𝑠 + 𝜔*)
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 Let us take the transfer function H(s) of the 2nd order system used in Bulb Box as 
an example:

• 𝜔* = 𝑎* = 31.62	,	          the resonant frequency = 5Hz

• 𝜁 = +$
) +%

= -
) %***

= 0.079	 the damping factor (very small, ideal = 1)

• 𝐾 = ,%
+%
= 1 ,               gain of the system at DC or zero frequency

 Since the damping factor is very small (much smaller than 1), this system 
is highly oscillatory.

Physical meaning of 𝝎𝟎, 𝝇, and 𝑲

𝐻 𝑠 =
	 𝑏*

𝑠) + 𝑎%𝑠 + 𝑎*
= 𝐾

𝜔*)

𝑠) + 2𝜁𝜔*𝑠 + 𝜔*)
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 Let us consider the transfer function H(s) again:

 The unit step response of the system is (i.e. 𝑥 𝑡 = 𝑢 𝑡 , 𝑎𝑛𝑑	𝑋 𝑠 = 1/𝑠):

 We want to say something about the dynamic characteristic of this system by 
finding the natural frequency 𝜔! and the damping factor 𝜁.

 To do that, we find need to find the root of the quadratic: 𝑠) + 2𝜍𝜔*𝑠 + 𝜔*)

The importance of damping factor

𝐻 𝑠 =
	 𝑏!

𝑠" + 𝑎#𝑠 + 𝑎!
= 𝐾

𝜔!"

𝑠" + 2𝜁𝜔!𝑠 + 𝜔!"

𝑌 𝑠 =
1
𝑠 𝐻 𝑠 =

1
𝑠 𝐾

𝜔!"

𝑠" + 2𝜁𝜔!𝑠 + 𝜔!"

𝑠 =
−2𝜁𝜔* ± (2𝜁𝜔*))	−4𝜔*)

2
= −𝜁𝜔* 	± 	𝜔* 𝜁) − 1
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 Depending on the value of the damping factor  𝜁, there are five cases of 
interest, each having a specific behaviour:

 Root of denominator: 

Five cases of behaviour

𝐻 𝑠 =
	 𝑏*

𝑠) + 𝑎%𝑠 + 𝑎*
= 𝐾

𝜔*)

𝑠) + 2𝜁𝜔*𝑠 + 𝜔*)

𝑠 = −𝜁𝜔( 	± 	𝜔( 𝜁. − 1
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Step Response for different damping factors

underdamped

Overdamped

Critically damped
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Step Response at 𝝎𝟎, 𝝇 = 𝟎. 𝟐

High resonant frequency

Takes around 4 cycles 
to settle to final value
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Frequency response of 2nd order system

Normalised frequency ⁄𝜔 𝜔! 

underdamped

Overdamped
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Step Response of a 1st order system

 Consider what happens to the circuit shown here as 
the switch is closed at t = 0.  We are interested in y(t).

 Apply KVL around the loop, we get:

 This is a simple first-order differential equation with 
constant coefficients.

 We can model closing the switch at t=0 as:

 Then the solution of the differential equation is:

 You should be familiar with this from Electronics 1 last 
year:    t = RC, the time-constant

y

𝑖 𝑡 𝑅 + 𝑦 𝑡 = 𝑥 𝑡 , 𝑏𝑢𝑡	𝑖 = 𝐶
𝑑𝑦
𝑑𝑡
	 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒	

𝑅𝐶
𝑑𝑦
𝑑𝑡

+ 𝑦 = 𝑥

𝑥 𝑡 = 𝑉	 𝑢(𝑡)	

y(t)

𝑦(𝑡) = 𝑉 1 − 𝑒	%
&
'( 	 𝑢(𝑡)
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Modelling using Laplace Transform

𝝉
𝒅𝒚
𝒅𝒕 + 𝒚 = 𝒙

s-domain  analysis
𝑯 𝒔 =

𝟏
𝝉𝒔 + 𝟏

L L-1

R

C

𝑥 𝑡 = 𝑉𝑢(𝑡)

𝑋 𝑠 = 𝑉×
1
𝑠

 Take LT of x(t): ℒ 𝑥 𝑡 = 𝑋 𝑠 = ℒ 𝑉×𝑢 𝑡 = 𝑉×ℒ 𝑢 𝑡 = 𝑉× #
)    

𝑥 𝑡 = 𝑉𝑢(𝑡) 𝑦(𝑡) = 𝑉 1 − 𝑒	"
#
$%	 𝑢(𝑡)

 Find transfer function H(s) of the circuit by taking the Laplace Transform of the 
differential equation:

𝑌 𝑠 = 𝐻 𝑠 𝑋 𝑠 = 𝑉×
1
𝑠 ×

1
𝜏𝑠 + 1

𝑦 𝑡 =?

𝜏𝑠𝑌 𝑠 + 𝑌 𝑠 = 𝑋 𝑠

⟹ 𝐻 𝑠 =
𝑌 𝑠
𝑋 𝑠

=
1

𝜏𝑠 + 1
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Forward & Inverse Laplace Transform

 Remember:  the definition of the Laplace Transform       is:L

L [x(t)] = X (s) = x(t)e−st dt
0

∞

∫

L4.1

L −1

L −1 [X (s)] = x(t) = 1
2π j  

X (s)est ds,    ω  → ∞
σ− jω

σ+ jϖ

∫

 The definition of the Inverse Laplace Transform         is:



Lecture 8  Slide 17PYKC 31 Jan 2025 DE2 – Electronics 2

 Finding inverse Laplace transform of                         .  (use partial fraction)

 To find k1 which corresponds to the term (s+0) in denominator, cover up (s+0) 
in Y(s), and substitute s = 0 (i.e. s+0=0) in the remaining expression:

 Similarly for k2, cover the  (s+1/t) term, and substitute s = -1/t, we get:

 Therefore

Finding Inverse Laplace Transform via partial fraction

L4.1

𝑌 𝑠 =
1
𝑠 ×

I1 𝜏
𝑠 + I1 𝜏

𝑌 𝑠 =
1
𝑠
×

M1 𝜏
𝑠 + M1 𝜏

=
𝑘%
𝑠
+

𝑘)
𝑠 + M1 𝜏

𝑘) = O
1
𝑠
×

M1 𝜏
𝑠 + M1 𝜏

	
#./ 0% '

= −1

𝑘% = O
1
𝑠
×

M1 𝜏
𝑠 + M1 𝜏 #.*

= 1

𝑌 𝑠 =
1
𝑠
−

1
𝑠 + M1 𝜏
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 So, we get:

 Use Laplace Transform table, pair 5:       𝑒/0𝑢 𝑡 	 ⟺ 	 %
!1/

 Same as results from  slide 14 using differential equation.

From Laplace Domain back to Time Domain

s-domain  analysis

𝑯 𝒔 =
I1 𝜏

𝑠 + I1 𝜏
L L-1

𝑥 𝑡 = 𝑉𝑢(𝑡)

𝑋 𝑠 = 𝑉×
1
𝑠

𝑌 𝑠 = 𝐻 𝑠 𝑋 𝑠 = 𝑉×
1
𝑠 ×

I1 𝜏
𝑠 + I1 𝜏

𝑦 𝑡 =?

𝑌 𝑠 = 𝑉(
1
𝑠
−

1

𝑠 + M1 𝜏
)

L

ℒ/% 𝑌 𝑠 = 𝑉ℒ/%
1
𝑠
−

1
𝑠 + M1 𝜏

= 𝑉 𝑢 𝑡 − 𝑒/
1
'	 𝑢 𝑡 = 𝑉×(1 − 𝑒/

1
')×𝑢 𝑡
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2s) − 5
(s + 1))s + 2)

 Finding  the inverse Laplace transform of                                 

 The partial fraction of this expression is less straight forward.  If the 
power of numerator polynomial (M) is the same as that of denominator 
polynomial (N), we need to add the coefficient of the highest power in the 
numerator to the normal partial fraction form:

 Solve for k1 and k2 via “covering”:

 Therefore

 Using pairs 1 & 5:

Another Examples of Inverse Laplace Transform

L4.1
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A video demonstrating an underdamped oscillatory system
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The Millennium Bridge


